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Abstract Tropical cyclones (TCs) tend to cool sea surface temperature (SST) via enhanced vertical mixing
and evaporative fluxes. This cooling is substantially reduced in the subtropics, especially in the northeastern
Pacific where the occurrence of TCs can warm the ocean surface. Here we investigate the cause of this
anomalous warming by analyzing the local oceanic features and TC-induced anomalies of SST, surface fluxes,
and cloud fraction using satellite and in situ data. We find that TCs tend to suppress low clouds at the
margins of the tropical ocean warm pool, enhancing shortwave radiative surface fluxes within the first week
following storm passage, which, combined with spatial variations in ocean thermal structure, can produce
a ~1°C near-surface warming in the northeastern Pacific. These findings, supported by high-resolution Earth
system model simulations, point to potential connections between TCs, ocean temperature, and low cloud
distributions that can influence tropical surface heat budgets.

1. Introduction

Tropical cyclones (TCs) are extreme weather events that can alter the vertical structure of the upper ocean,
through intense fluxes of heat and momentum at the ocean-atmosphere interface. The ocean response to
TCs is typically characterized by surface cooling along stormwakes [Price, 1981], along with warming beneath
the mixed layer associated with the redistribution of ocean heat by vertical mixing [Mei et al., 2013; Cheng
et al., 2015]. The cool surface conditions typically persist for several days to weeks, while the subsurface
warming can persist for several months or longer. TC-induced ocean warm anomalies can be advected away
from storm regions by large-scale currents [Pasquero and Emanuel, 2008;Manucharyan et al., 2011; Bueti et al.,
2014) or reabsorbed by the mixed layer (and then damped by the atmosphere) on interseasonal timescales
[Jansen et al., 2010].

Past studies have shown that the aggregated effects of TC-induced ocean heat anomalies can have poten-
tially important implications for tropical ocean mixing and heat budgets [Sriver and Huber, 2007; Sriver
et al., 2010], which may influence global climate variability on a wide range of timescales. For example, varia-
bility in basin-aggregated TC-induced ocean heat anomalies can influence hemispheric atmospheric circula-
tions and weather patterns on seasonal timescales [Sriver and Huber, 2010; Hart, 2011]. TCs may also be
important for characterizing variations in global ocean-atmosphere energy budgets and ocean heat
transport [Emanuel, 2001; Sriver et al., 2008; Jansen and Ferrari, 2009; Scoccimarro et al., 2011; Manucharyan
et al., 2011], in particular for past climate conditions exhibiting potentially higher levels of TC activity than
the current climate [Korty et al., 2008; Fedorov et al., 2010].

Global observational estimates of TC-induced sea surface temperature (SST) anomalies indicate that the
aggregated effect of these events is typically to cool the tropical oceans [Cheng et al., 2015]. However, the
characteristic temperature response in the northeastern Pacific region, South Indian Ocean, and other subtro-
pical regions can be considerably different. Over the northeastern Pacific, for example, TCs tend to cause
anomalous surface cooling within the southern portion of the region but anomalous warming in the northern
portion, when integrated across all storms tracks annually [Sriver and Huber, 2007; Sriver et al., 2008].

Here we quantify the aggregated effect of TC-induced surface heat fluxes on SST, using a suite of satellite-
based and in situ observational products, along with results from a high-resolution Earth system model.
We include in our analysis effects on top-of-the-atmosphere (TOA) radiation budgets, upper ocean
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temperatures, and changes in cloudiness in the wake of storms. We focus primarily on explaining the
observed temperature response in the northeastern Pacific region and discuss possible implications for local
and global climate.

2. Methods

We analyze storm-induced changes in upper ocean temperatures, ocean-atmosphere fluxes, and cloud
cover for all TCs globally during the period 2003–2013 using a best track data set that combines informa-
tion from NOAA’s Storm Prediction Center and the U.S. Navy’s Joint Typhoon Warning Center. We employ
a footprint method that samples storm properties within a 6 × 6 degree domain that is centered on the
best track location and moves with each storm (as described in Li et al., 2016). At each storm location,
we analyze changes in SST, cloud fraction, and longwave and shortwave radiative fluxes. Anomalies are
referenced either to local prestorm conditions (for temperature) or to climatological averages (for clouds
and radiative fluxes). We use prestorm conditions for calculating temperature anomalies, because it
preserves variability in the background conditions. Fluxes and clouds are referenced to the 10-year daily
climatologies at each grid point, which enables us to compare conditions within storm wakes relative to
typical non-storm conditions. The method assumes all anomalies are due to TC effects, and we neglect
the effect of the seasonal cycle in the temperature anomaly calculations (which we assume to be
small on the timescale of 1week). We present all results as the long-term average of the annually aggre-
gated effects.

Optimally interpolated (OI) SST data come from the Tropical Rainfall Measuring Mission’s Microwave Imager
(TMI) produced by Remote Systems Science with horizontal resolution of 0.25° [Wentz, 2015]. Satellite-derived
products include top-of-atmosphere (TOA) radiative fluxes from NASA’s Clouds and the Earth’s Radiant
Energy System (CERES) experiment [Wielicki et al., 1996] and cloud properties from NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS). Subsurface ocean temperature data (from 2010 to 2013)
are based on a weekly gridded Argo data product with 0.5 × 0.5 degree horizontal resolution [Gaillard,
2015] developed at the Laboratorie de Physique des Oceans and distributed by the Coriolis In Situ Service
for Operational Oceanography. Monthly oceanmixed layer depth data (from 2000 to 2011) are obtained from
the European Center for Medium-Range Weather Forecast Ocean Reanalysis System 4. Here mixed layer
depth is defined by the 0.5°C temperature criterion.

The SST data retrieved by TMI may contain some biases at the edges of rain cells due to undetected rain.
However, during the production of OI SST, some quality control was applied; particularly, SSTs greater than
three standard deviations were flagged and removed from the data set. In addition, there are a few days when
TMI observations were known to bemissing; this, however, should not have a significant impact over a 10 year
period (more information available at http://www.remss.com/measurements/sea-surface-temperature/oisst-
description). For CERES TOA fluxes, Su et al. [2015] determined that the bias and root mean square error of the
monthly mean TOA shortwave flux are less than 0.2Wm�2 and 1.1Wm�2, respectively, while the monthly
mean TOA longwave flux is 0.5Wm�2 and 0.8Wm�2, respectively, both of which are over an order of
magnitude smaller than the TC-induced anomalies. Lastly, this methodology for retrieval of cloud properties
from MODIS was found to be robust and valuable for examining nonpolar regions [Minnis et al., 2004].

To complement the observational analysis, we also examine modeled TC-ocean interactions using the
Community Earth System Model (CESM) [Hurrell et al., 2013]. CESM includes atmosphere, land surface, ocean,
and sea ice model components, connected by a central coupler. To maintain methodological consistency
with the observational analyses, we utilize 10 years of high-resolution model output from a fully coupled
multidecadal CESM preindustrial control simulation. The simulation is configured with the 0.25° horizontal
resolution Community Atmosphere Model version 5 (CAM5) [Neale et al., 2010] with a spectral element
dynamic core, coupled to the nominal 1° horizontal resolution ocean model (Parallel Ocean Program
version 2) [Smith et al., 2010]. The simulation is initialized with spun-up land surface conditions obtained
from the National Center for Atmospheric Research (NCAR) (Jim Edwards, personal communication) and
ocean conditions from the Polar Science Center Hydrographic Climatology ocean data set [Levitus et al.,
1998; Steele et al., 2001]. While the coupled model simulation is not yet in full equilibrium, the 10-year period
used in this study exhibits a near-balanced TOA radiation budget and relatively steady global-average
surface temperature (Supporting Information Figure S1).
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The simulated 10-year average SST pattern is generally consistent with observations, particularly within the
tropics (Supporting Information Figure S2). We introduce several key changes to CESM to improve the repre-
sentation of TC effects, including increased ocean-atmosphere coupling frequency to capture more realistic
representation of near-inertial internal waves [Jochum et al., 2013] and updated surface wind drag coefficient
parameterization suitable for high wind regimes [Moon et al., 2007]. The model generally simulates realistic
TC climatologies (including number, seasonality and intensity distributions), as well as the transient upper
ocean responses to TC forcing [Li et al., 2016; Li and Sriver, 2016; McClean et al., 2011]. The model exhibits
some biases, such as reduced TC activity in the North Atlantic and relatively weak storms in the East Pacific
(Supporting Information Figures S3 and S4). The suppressed TC activity is likely due to biases in seasonal
SST and vertical wind shear over this region [Li et al., 2016], which is an issue shared by other high-resolution
coupled model simulations [Small et al., 2014; Kim et al., 2014].

Using the TC footprint method [Li et al., 2016], we analyze TC-induced changes in cloudiness and SST/fluxes
within observed and modeled storm wakes during the first week following the storms. We characterize
storm-induced SST anomalies by following each storm track and subtracting the prestorm temperatures
(�1 day relative to storm passage) from the poststorm temperatures (averaged from +3 to +5 days). We
tested the sensitivity of the SST results to the choice of anomaly time frame and we chose to use +4 days
because it represents the typical timing of the wake transition from the forced response to wake recovery
stage [Cheng et al., 2015]. Similarly, along each storm track, radiative fluxes and cloud fractions are calculated
by subtracting the 10-year daily climatology from the storm-induced conditions for the period�1 to +4 days
relative to storm passage and then averaging over the period.

3. Results

We find that TCs generally cool the surface ocean (Figure 1, Supporting Information Figure S5), and the mag-
nitude of the cooling increases with TC activity (e.g., northwestern Pacific and northeastern Atlantic regions).
The cooling is primarily due to vertical ocean mixing and, to a lesser extent, by enhanced surface evaporation
[Price, 1981]. These regions also experience increased cloudiness associated with the storms (Figure 1f), which
can potentially contribute to surface flux anomalies by reducing the amount of incoming solar radiation
reaching the surface.

The average TC-induced SST response in the northeastern Pacific basin looks considerably different from
other TC regions (Figure 1d). Here we find a strong dipole response in SST, with anomalous cooling in
the southern portion of the basin and anomalous warming in the northern portion (statistically significant
with p values less than 0.05—Supporting Information Figure S6). The areas of cooling and warming are
separated roughly according to the location of the climatological 27°C isotherm of SST. Equatorward of
the 27°C climatological isotherm, the anomalously cool region exhibits reduced downward heat fluxes
and increased cloudiness consistent with other storm regions. These cool anomalies can persist for several
weeks in this region [Balaguru et al., 2014]. The response is opposite poleward of the 27°C isotherm. This
anomalously warm region exhibits positive downward heat fluxes (Figure 1e) and decreased cloudiness
(Figure 1f).

To identify the cause of the spatial variability in the northeastern Pacific, we isolate the individual heat flux
contributions (Figure 2) and partition the cloud distributions into low- and high-level cloudiness. The south-
ern portion experiences increased upward shortwave and decreased upward longwave fluxes (Figure 2),
primarily due to enhanced storm clouds at high levels. The response is reversed in the northern region,
and we conjecture the cause relates to regional differences in climatological SST and storm-induced
changes in cloudiness. In northeastern Pacific areas cooler than 27°C, deep convection is suppressed, as
shown by larger low-level cloudiness in the climatological cloud distributions and convective stability
(Supporting Information Figure S7). We find that TCs tend to destroy these preexisting low-level clouds,
enhancing convective mixing and stabilizing the lower atmosphere. This effect is stronger for higher inten-
sity storms. The decreased poststorm low-level cloudiness in this region leads to increased surface
shortwave radiation.

We also examined the potential contribution of ocean processes to the observed temperature dipole pattern
using subsurface ocean temperatures from Argo floats and the high-resolution CESM simulation. Both the
observations and the model show no indication of a temperature inversion in the northeastern Pacific
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Figure 1. The impact of tropical cyclones in observations. (a) SST in °C, (b) net surface heat flux in Wm�2, and (c) total cloud fraction in percent, averaged over their
respective hemisphere’s TC season (hereafter, it is August to October for the northern hemisphere and February to April for the southern hemisphere) during
the period 2003–2013. (D) Maps of TC-induced anomalous SST (averaged from +3 to +5 days poststorm minus �1 day prestorm), (e) net surface heat flux
(storm-induced minus climatology), and (f) total cloud fraction (storm-induced minus climatology), calculated along storm tracks for the periods �1 to +4 days
relative to storm passage. Black contour lines highlight the location of the 27°C isotherm from Figure 1a.
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based on the average vertical temperature profiles for the northern hemisphere TC season (Supporting
Information Figure S8). However, the vertical temperature gradients are weaker, and deeper mixed layer
depths are observed in the poleward region (Supporting Information Figure S9), suggesting weaker
expected cooling by TC-induced vertical mixing compared to the equatorward region [Balaguru et al.,
2013]. The spatial variations in upper ocean heat content and mixed layer depth work in concert with the
atmospheric shortwave forcing to induce the observed dipole response (Figure 3).

4. Discussion

Suppression of low clouds by TCs is not unique to the northeastern Pacific. Our analysis indicates that TCs can
also reduce low-level cloudiness in several other regions inside or adjacent to the tropical ocean warm pool,
such as the northwestern Pacific and south Indian Ocean. The South Indian Ocean experiences a nontrivial
warming of about 0.5°C. Over this region there occurs a reduction in low clouds but increase in high clouds,
which together may account for the surface warming. The northeastern Pacific represents the only region
exhibiting the strong dipole pattern in the temperature response, which is in part due to the spatial distribu-
tion of low cloud coverage and the location of the seasonal 27°C isotherm.

Figure 2. Observed of top-of-the-atmosphere fluxes. (a) The reflected shortwave radiation and (b) outgoing longwave radiation in Wm�2, averaged over their
respective hemisphere’s TC season during the period 2003–2013. (c) The TC-induced anomalous reflected shortwave radiation (storm-induced minus climatology)
and (d) outgoing longwave radiation (storm-inducedminus climatology) for the period 2003–2013. Anomalies are calculated along storm tracks for the periods�1 to
+4 days relative to storm passage. Black contour lines highlight the location of the 27°C isotherm from Figure 1a.
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The observational results are generally replicated in the CESM simulation, which robustly captures the
observed spatial patterns and variability in TC-induced SST anomalies and surface fluxes, including the dipole
pattern in the northeastern Pacific region (Figure 4). Globally, the model overestimates the TC-induced ocean
cooling, as compared to the observations, possibly masking some of the warming effects by enhanced radia-
tive forcing. To investigate the amount of ocean warming induced by the poststorm fluxes in the northeast-
ern Pacific, we use daily surface flux and ocean temperature output from CESM to compare TC-induced flux
anomalies with anomalous ocean heat content during the 5 days immediately surrounding storm passage.
We estimate TC-induced ocean heat content by integrating the storm-induced temperature anomalies along
TC tracks (using the footprint method described previously) to 25m depth, which represents the depth at
which the warming anomaly goes to zero (Supporting Information Figure S10) [Li et al., 2016; Li and Sriver,

Figure 3. TC-induced ocean and cloud responses for the northeastern Pacific region. (a) Mean SST in °C and (b) low-level cloud fraction in percent averaged over the
northern hemisphere TC season (August to October) during the period 2003–2013. (c) Annual averages of the TC-induced anomalous SST (poststorm minus
prestorm) and (d) low-level cloud fraction (storm-induced minus climatology) for the period 2003–2013. Anomalies are calculated along storm tracks for the periods
�1 to +4 days relative to storm passage. Black contour lines highlight the location of the 27°C isotherm from Figure 1a.
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2016]. In the model, the annually aggregated anomalous ocean heat content in the uppermost 25m
(~0.20 × 108 J/km2) is roughly consistent with the heating by TC-induced flux anomalies (~0.24 × 108 J/km2)
averaged over the northern TC region in the eastern Pacific.

The relationship between TCs, cloud cover, and surface fluxes may have important implications for surface
heat budgets and tropical climate. On relatively short (weekly to monthly) timescales, these interactions
can influence poststorm wake recoveries and potentially mask subsurface cooling by vertical mixing,
which can in turn affect subsequent storm development and intensification. Moreover, the dipole
response of the anomalous SST acts to reduce the background SST gradient in this region, with the
potential to affect the weather patterns through modifications of near-surface baroclinicity and the
subtropical jet stream.

On longer timescales, these results point to key climate connections between TC activity, SST patterns, cloud
distributions, and surface radiation that could potentially influence the tropical mean state and variability. For
example, it has been hypothesized that climates with enhanced TC-induced mixing may have been capable
of sustaining permanent El Niño-like temperature patterns, exhibiting anomalously warm temperatures in
the eastern equatorial Pacific region, such as during the early Pliocene (~5 million years ago; Brierley et al.,

Figure 4. Simulated tropical cyclone impacts. (a) Maps of CESM’s SST in °C and (b) net surface heat flux in Wm�2, averaged over their respective hemisphere’s TC
season during the period 2003–2013. (c) Maps of CESM’s TC-induced anomalous SST (averaged from +3 to +5 days poststorm minus �1 day prestorm and (d) net
surface heat flux (storm-induced minus climatology), calculated along storm tracks for the periods �1 to +4 days relative to storm passage. Black contour lines
highlight the location of the 27°C isotherm from Figure 4a.
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2009). The positive feedback between TC activity and shortwave forcing in the northeastern Pacific region
may have contributed to sustaining these climate conditions [Fedorov et al., 2010]. Such feedbacks may
have also been important for contributing to the warm Eocene conditions ~50 million years ago [e.g.,
Korty et al., 2008].
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